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Dark Energy and the Fate of the Universe

Renata Kallosh and Andrei Linde

Department of Physics, Stanford University, Stanford, CA 94305-4060, USA

It is often assumed that in the course of the evolution of the universe, the dark energy either
vanishes or becomes a positive constant. However, recently it was shown that in many models based
on supergravity, the dark energy eventually becomes negative and the universe collapses within the
time comparable to the present age of the universe. We will show that this conclusion is not limited
to the models based on supergravity: In many models describing the present stage of acceleration
of the universe, the dark energy eventually becomes negative, which triggers the collapse of the
universe within the time t = 1010

− 1011 years. The theories of this type have certain distinguishing
features that can be tested by cosmological observations.

PACS numbers: 98.80.Cq, 11.25.-w, 04.65.+e

I. INTRODUCTION

Recent observations indicate that the Universe is ac-
celerating, and it is spatially flat (Ωtot = ΩM +ΩD = 1).
Approximately 0.3 of the total energy density of the uni-
verse ρ0 ∼ 10−120M4

p ∼ 10−29 g/cm3 consists of ordinary
matter (ΩM ≈ 0.3), and 0.7 of the energy density corre-
sponds to dark energy (ΩD ≈ 0.7) [1, 2]. There are three
basic scenarios describing the evolution of the universe
filled by dark energy.

i) From a purely phenomenological point of view, the
simplest possibility is that the dark energy ρD is repre-
sented by a positive vacuum energy (cosmological con-
stant) Λ ∼ 0.7ρ0. If this is the case, the universe will
reach de Sitter (dS) regime and expand exponentially for
an indefinitely long time, a ∼ eHt. This possibility seems
much more natural than the other two possibility to be
discussed below.

ii) It may also happen that the dark energy is the en-
ergy of a slowly changing scalar field φ with equation
of state pD = w ρD, w ≈ −1. In most of the models
of dark energy it is assumed that the cosmological con-
stant is equal to zero, and the potential energy V (φ) of
the scalar field driving the present stage of acceleration,
slowly decreases and eventually vanishes as the field rolls
to φ = ∞, see e.g. [3]. In this case, after a transient
dS-like stage, the speed of expansion of the universe de-
creases, and the universe reaches Minkowski regime.

iii) It is also possible that V (φ) has a minimum at
V (φ) < 0, or that it does not have any minimum at all
and the field φ is free to fall to V (φ) = −∞. In this case
the universe eventually collapses, even if it is flat [4].
The simplest way to understand this unusual effect is to

analyse the Friedmann equation
(

ȧ
a

)2
= ρ/3 (in units

Mp = 1). The positive energy density of a normal mat-
ter, as well as the positive kinetic energy density of the
scalar field, tend to decrease in an expanding universe.
At some moment, the total energy density ρ, including
the negative contribution V (φ) < 0, vanishes. Once it
happens, the universe, in accordance with the equation
(

ȧ
a

)2
= ρ/3, stops expanding and enters the stage of ir-

reversible collapse.

The last possibility for a while did not attract much
attention. There was no specific reason to expect that
the present regime of acceleration is going to end, and
there was even less reason to believe that the universe is
going to collapse any time soon.

Unfortunately, despite many attempts, we were unable
to obtain a good theoretical description of the models
i) and ii) in the context of M-theory. We will discuss
this issue in Sect. 2. Meanwhile, in [5, 6] it was found
that one can describe the present state of acceleration of
the universe in a broad class of models based on N=8
extended supergravity (the theory closely related to M-
theory). However, the universe described by these models
typically collapses within the time tcollapse comparable to
its present age t0 ∼ 14 billion years.

In the beginning, this seemed to be a model-specific
result that should be taken seriously only if one can con-
struct fully realistic models of elementary particles based
on extended supergravity. However, this result is valid
not only in for the models based on extended supergrav-
ity but for many phenomenological models of dark energy
based on the minimal N=1 supergravity [5].

In this paper we will argue that this result is even more
general. It can be obtained in almost every model of dark
energy, either based on supergravity or not, if one takes
into account the possibility that the effective potential of
the field φ may have a minimum at V (φ) < 0 or may be
unbounded from below.

We will first review the possibilities to describe the
accelerating universe starting with M/string theory and
supergravity. Then we will describe our general argu-
ment.

II. DARK ENERGY IN M-THEORY AND

EXTENDED SUPERGRAVITY

A. M-theory with compactification

The standard approach to the description of our world
in M/string-theory is based on the assumption that our
space-time is 11 or 10 dimensional, but 7 or 6 of these
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dimensions are compactified. The finitness of the volume
of the compactified space is required so that the origi-
nal D=11 or D=10 theory can be related to the resulting
D=4 theory. One can describe the scale of compactifica-
tion for example, in string theory by introducing scalar

moduli field φ, which appears as a coefficient e−
√

6φ in
front of the potential energy V in 4D. (We use the units
Mp = 1, where M2

p = 1
8πG .) Here V is the value of

the potential at which other scalar fields of the higher-
dimensional theory are stabilized. However, the mech-
anism of stabilization of the compactified space is still
unknown. In the absence of such mechanism, the term

e−
√

6φ V leads to the runaway behaviour φ → ∞, which
implies decompactification. During this process, the en-

ergy density e−
√

6φ V falls down very quickly. A simi-
lar result is valid if we consider D=10 string theory as
a result of compactification of D=11 supergravity. The
bottom line is: during the cosmological evolution in D=4

the runaway moduli represent decompactification of all

internal dimensions of M-theory.

The scale factor of the universe a(t) in the theories
with exponential potentials of the type of e−λφ V grows

as t2/λ2

. In order to describe acceleration of the universe
in such theories one would need to have λ <

√
2. In the

theory with the potential e−
√

6φV the universe can only
decelerate.

In application to string cosmology these observations
imply that until we learn how to stabilize the compact-
ified space, we cannot describe the accelerating universe
approaching dS regime, as well as the accelerating uni-
verse with the energy density slowly approaching zero.

B. M-theory with non-compactification

One way to avoid the problems discussed above is to
consider the models with a non-compact internal space
[7, 8]. One may start with D=11 or D=10 supergrav-
ity with internal space with an infinite volume and re-
late it to N=8 supergravity in D=4 [9]. This is called
‘non-compactification.’ In this approach the connection
between the original D=10 or D=11 theory and our D=4
world is more complicated than in the usual case of di-
mensional reduction. However, one can study these the-
ories directly in D=4. These theories are interesting
because they have maximal amount of supersymmetry,
related to D=11 and/or D=10 supergravities with non-
compact internal spaces.

The number of such models successfully describing an
accelerated universe is very limited, due to the maximal
amount of supersymmetries. Some of these theories have
dS solutions and can describe dark energy [5, 8]. These
dS solutions correspond to the extrema of the effective
potentials V (φ) for some scalar fields φ. An interesting
and very unusual feature of these scalars in all known
theories with N ≥ 2 is that their mass squared is quan-
tized in units of the Hubble constant H0 corresponding

to dS solutions: m2

H2

0

= n, where n are some integers of

the order 1. This property was first observed in [7] for
a large class of extended supergravities with unstable dS
vacua, and confirmed and discussed in detail more re-
cently in [8] with respect to a new class of N = 2 gauged
supergravities with stable dS vacua [10].

The meaning of this result can be explained in the
following way. The simplest potential for a scalar field φ
in this theory has the form

V (φ) = Λ
(

2 − cosh
√

2φ
)

. (1)

Usually the potential near its extremum can be repre-
sented as V (φ) = Λ +m2φ2/2, where Λ and m2 = V ′′(0)
are two free independent parameters. However, in ex-
tended supergravities with Λ > 0 one always has m2 =
V ′′(0) = nV (0)/3 = nΛ/3, where n are integers (we are
using units Mp = 1) [7, 8]. Taking into account that in
dS space the Hubble constant is given by H2

0 = Λ/3, one
has, for |φ| � 1, V (φ) = Λ(1+nφ2/6) = 3H2

0 (1+nφ2/6).
In particular, in all known versions of N = 8 supergrav-
ity dS vacuum corresponds to an unstable maximum,
m2 = −6H2 [7, 8], i.e. at |φ| � 1 one has

V (φ) = Λ(1 − φ2) = 3H2(1 − φ2) . (2)

One can easily verify that the simplest potential (1) satis-
fies this rule. The main property of this potential is that
m2 = V ′′(0) = −2V (0) = −2Λ = −6H2

0 . One can show
that a homogeneous field φ � 1 with m2 = −6H2

0 in the
universe with the Hubble constant H0 grows as follows:
φ(t) = φ0 exp cH0t, where c = (

√
33 − 3)/2 ≈ 1.4. Con-

sequently, in the universe with the energy density domi-
nated by V (φ) it takes time t ∼ 0.7H−1

0 lnφ−1
0 until the

scalar field rolls down from φ0 to the region φ � 1, where
V (φ) becomes negative. Once it happens, the universe
rapidly collapses.

Note, that the present age of the universe t0 is approx-
imately equal to H−1

0 , and the total time of the devel-
opment of the instability leading to the global collapse
of the universe is given by t ∼ 0.7H−1

0 lnφ−1
0 , which is

also of the same order as H0, unless φ0 is exponentially
small. This explains the main result of Ref. [5, 6]: the
universe described by this class of theories is going to col-
lapse within the time tcollapse comparable to its present
age t0 ∼ 14 billion years, see Fig. 1.

C. Two-field models of dark energy in N=8

supergravity

There are also 3 different cosmological models of dark
energy based on N=8 supergravity, with the following
potentials of two fields, φ and σ. We will list them here,
leaving a detailed description of their cosmological impli-
cations for the future publication [11]

V (φ, σ) = Λe−
√

2

3
σ

(

3 − cosh(2
√

2φ)
)

. (3)



3

-1 -0.5 0.5 1 t

0.5

1

1.5

2

2.5

a

FIG. 1: Scale factor a(t) in the model based on N = 8 su-
pergravity. The upper (red) curve corresponds to the model
with φ0 = 0. In this case the universe can stay at the top
of the effective potential for an extremely long time, until it
becomes destabilized by quantum effects [7]. The curves be-
low it correspond to φ0 = 0.2 and φ0 = 0.3. The blue dashed
curve corresponds to φ0 = 0.35. The present moment is t = 0.
Time is given in units of H−1(t = 0) ≈ 14 billion years.

This is an improved version of Townsend’s model of M-
theory quintessence [12]. Townsend used this potential at

φ = 0 and found the exponential potential e−
√

2

3
σ which

may describe the current acceleration with a(t) ∼ t3.
The complete form of the potential shows that the full
potential of this theory is unbounded from below and
unstable with respect to the generation of the field s. The
speed of the development of the instability is determined
by the curvature of the potential in the φ-direction, V ′′ =
−4V (0), i.e. m2

φ ≈ −12H2
0 . This allows for the existence

of a stage of accelerated expansion, but eventually the
universe collapses, just like in the theory (1) discussed
above.

The second model is

V (φ) = Λe−
√

2

7
σ

(

24e−
√

1

21
φ − 8e2

√
3

7
φ − 3e−8

√
1

21
φ
)

.

(4)
The φ part of the potential has a dS maximum at

φ = −
√

3
7 log 2. It may describe the current acceleration

during the slow growth of the field t: a(t) ∼ t7. The
instability with respect to the field φ eventually develops
and the universe collapses.

The last model of this type has a saddle point dS so-
lution at φ = 0, σ = 0

V (φ) = Λ
(

2 coshσ − cosh
√

2φ
)

. (5)

At the point σ = 0 this model reduces to the model (1)
which describes dark energy and eventual collapse of the
universe.

A lot of work should be done to incorporate usual mat-
ter fields and construct realistic cosmology in N=8 su-
pergravity. However, it is quite encouraging that there

is a class of models based on N=8 supergravity which
can describe the present stage of acceleration of the uni-
verse. All of these models share the same property: at
some moment expansion of the universe stops and the
universe collapses within time tcollapse comparable to its
present age t0 ∼ 14 billion years.

III. A GENERAL CLASS OF DARK ENERGY

MODELS

The main reason for the coincidence of the two different
time scales, the present age of the universe and the time
until the Big Crunch, is the relation |m2| ∼ H2. But this
relation appears not only in the extended supergravity. It
is often valid for the moduli fields in N = 1 supergravity
[13]. In particular, it is valid in the simplest Polónyi-
type toy model for dark energy in N = 1 supergravity
[5]. If one does not fine-tune the value of the cosmological
constant in this model to be equal to zero, one has two
equally compelling options: V (φ) > 0 and V (φ) < 0 in
the minimum of the effective potential. In the first case,
the universe enters dS regime of eternal expansion. In the
second case, the universe collapses. The time until the
global collapse depends on the parameters of the model
and the initial conditions, but typically it is of the same
order as t0 ∼ 14 billion years, just as in the extended
supergravity [5].

Another interesting model is the axion quintessence
[14, 15]. In the M-theory motivated version of this model
proposed in [15] one has V (φ) ∼ Λ(cos(φ/f)+C), where
the value of constant C depends on the details of the
model. For C = 0, f = O(Mp) one finds m2 = V ′′(0) =
−O(H2

0 ). According to [5, 16], this version of the axion
quintessence model can successfully describe the present
stage of acceleration of the universe, but, just like the
N = 8 models, it leads to a global collapse of the universe
in the future within the typical time tcollapse ∼ t0 ∼ 14
billion years.

In fact, the crucial relation |m2| <∼ H2 is valid in most
of the dark energy models. It is the standard inflationary
slow-roll condition, which should be valid at the present
stage of the late-time inflation/acceleration of the uni-
verse. Sometimes this slow-roll condition can be violated
[7, 17], but typically one cannot have a prolonged stage
of acceleration of the universe for |m2| � H2. As a re-
sult, one can give a simple argument suggesting that the
coincidence of the two different time scales, the present
age of the universe and the time remaining until the Big
Crunch, is a generic property of many models of dark
energy.

Let us make the simplest assumption that the expan-
sion of the universe at t > t0 can be approximately
described by the simple power-law equation a(t) ∼
a(t0)

(

t+c
t0+c

)r

, where c is some constant. The Hubble

constant in the universe with a(t) ∼ (t + c)r is given by
r

t+c , which means that the total energy density is equal
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to 3H2 = 3r2

(t+c)2 . The parameter c is determined by the

continuity condition for H : r
t0+c = H0 ≈ t−1

0 . The last
part of this equation is the observed relation between
the present value of H and the age of the universe in the
simplest ΛCDM model. This gives c ≈ (r − 1)t0.

The energy density will become N2 times smaller than
now at the time t − t0 ≈ (N − 1) r t0. In particular, the
energy density will become 2 times smaller at the time
t − t0 ≈ 0.4 r t0 from now, and it will become 9 times
smaller at t− t0 = 2r t0. How large is this time interval?

Acceleration of the universe implies that r > 1. Taking
for definiteness r = 2, one finds that the density of the
universe will decrease 2 times at the moment t − t0 ≈
0.8 t0 ∼ 10 billion years from now, and it will drop 9
times 50 billion years from now.

Now let us take any model of dark energy with r =
2 and add to the scalar potential V (φ) a tiny negative
cosmological constant Λ = −ρ0/N

2 with N2 � 1. The
evolution of the universe up to the present moment will
not change significantly. One can make this model even
better by multiplying V (φ) by some factor B > 1 to
ensure that the present value of ΩD remains equal 0.7
even after we add a negative constant Λ = −ρ0/N

2 to
V (φ). This model will remain a viable model of dark
energy. However, after some time t − t0 ≈ 2(N − 1) t0
the value of V (φ) will drop down more than N times,
the total energy density of the universe will vanish, the
universe will stop expanding, and soon after that it will
collapse. If N is not too large, the universe collapses at
the time tcollapse = O(t0).

One could think that the argument given above works
only for the marginal situation, when a(t) ∼ tr with
r = O(1). However, the final result is very general. Our
procedure of modification of the potential (subtraction
of a constant and a subsequent compensation of the de-
crease of ΩD via the multiplication of V (φ) by a con-
stant B > 1) works until the moment when the theory
no longer represents dark energy because the potential
becomes too steep. This happens for any theory of dark
energy, even if the original potential was extremely flat
(which corresponds to r � 1). Once it happens, the field
rolls down within the time O(H−1). The rolling field
rapidly approaches the region of negative V (φ), which
typically leads to the collapse of the universe within the
time O(H−1).

This suggests that many models of dark energy consid-
ered in the literature have viable counterparts that can
be obtained from the original models by adding a nega-
tive cosmological constant Λ <∼ −ρ0. Unless the absolute
value of this extra term is many orders of magnitude
smaller than ρ0, these models will describe the universe
collapsing within the time comparable to the present age
of the universe.

IV. EXAMPLE: DARK ENERGY WITH AN

EXPONENTIAL POTENTIAL

As an example illustrating the general argument given
in the previous section, let us consider dark energy de-
scribed by the scalar field φ with an exponential potential

V (φ) = Λ e−λφ. (6)

We already mentioned that this theory describes an ac-
celerating universe for λ <

√
2. However, in the realis-

tic situation this condition can be slightly relaxed. One
should take into account that the post-inflationary uni-
verse rapidly expanded, being dominated by hot matter
and then by cold dark matter. This expansion does not
allow the field φ to move until the energy density of mat-
ter becomes sufficiently small. Therefore in the beginning
the kinetic energy of the scalar field is very small, so it
has the same equation of state as the cosmological con-
stant. Then the field starts moving slowly, loosing its
energy at a much slower paste than CDM. Eventually,
the universe enters the stage with ΩD = 0.7 (the present
time), and then ΩD continues to grow. As a result, one
can have ΩD = 0.7 and w < −0.6 at present for λ <∼ 1.7
[5, 18].

In our investigation we will assume, without loosing
the generality, that the initial value of the field was φ = 0
(one can always rescale the field and the potential). Then
one should find such value of the parameter Λ that the
universe enters the stage with ΩD = 0.7 at the same
time when its Hubble constant acquires its present value
H0 ∼ 10−60Mp. This requires fine-tuning, but this is the
same fine-tuning that hampers all models of dark energy
[5, 18].

0.5 1 1.5 2 φ
-2

2

4

V

FIG. 2: Effective potential V = ΛC

(

eφ/2
− C

)

with C =
0, 0.1 , 0.2, 0.3 and 0.4. The coefficients ΛC are fixed by the
condition that for each value of C one should have the same
value of the Hubble constant and ΩD = 0.7 at the present
moment t = t0.

Now we will consider a class of potentials of a more gen-
eral type, containing a constant negative contribution, as
suggested in the previous section:

V (φ) = ΛC

(

e−λφ − C
)

. (7)
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Here C is some positive constant. The constant Λc should
be found anew for each new value of C, just as we did for
the case C = 0 described above. This can be done, and
the cosmological evolution of this model can be easily
studied using the methods described in [5]. Here we will
only present the results of our investigation of a model
with λ = 1.

-1 1 2 3 4 t

2

4

6

8

a

FIG. 3: Scale factor a(t) in the model with the potential

V = ΛC

(

eφ/2
− C

)

. The upper (red) curve corresponds to
the model with C = 0. The curves below it correspond to
C = 0.1, 0.2, 0.3 and 0.4. The present moment is t = 0.
Time is given in units of H−1(t = 0) ≈ 14 billion years.

Figure 3 shows the evolution of the scale factor of the
universe for 4 different values of parameter C: C =
0, 0.1, 0.2, 0.3 and 0.4. For all of these cases one can
find such parameters ΛC that the value of the Hubble
constant at t = t0 coincides with its present value (the
curves a(t) have the same derivative at t = 0 in Figure
3).

1 2 3 4 5 z
0.1

0.2

0.3

0.4

0.5

0.6

0.7

ΩD

FIG. 4: Dark energy ΩD as a function of redshift z for V =
ΛC

(

eφ/2
− C

)

with C = 0, 0.1, 0.2, 0.3 and 0.4. The present
time corresponds to z = 0. As we see, all curves are practically
indistinguishable, except for the dashed curve corresponding
to C = 0.3.

1 2 3 4 5
z

-1

-0.8

-0.6

-0.4

-0.2

w

FIG. 5: Equation of state w as a function of redshift z for
C = 0, 0.1, 0.2, 0.3 and 0.4. For C = 0.4 this function sharply
rises to w > 0 near z = 0. The red (thick) line w = −1
corresponds to the model with C = 0.

All of the models with C = 0, 0.1, 0.2, 0.3 with the
potentials shown in Figure 2 can represent dark energy
with ΩD = 0.7 at the present moment (the point z = 0 in
Figure 4). However, the largest value of ΩD in the case
C = 0.4 is 0.58, and the equation of state w in this case
blows up near z = 0, see Figure 5.

0.2 0.4 0.6 0.8 1 1.2
z

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

a
a
_..

FIG. 6: Relative acceleration of the universe ä/a as a function
of redshift z for C = 0, 0.1 , 0.2, 0.3, and 0.4. For C = 0.4 the
universe never accelerates, which is ruled out by observational
data. The red (thick) line w = −1 corresponds to the model
with C = 0.

As we see, the universe with C = 0 (thick red line
in Figures 2-6) always continues its accelerated expan-
sion. However, in all other cases the universe collapses
within the time ranging from 1.3t0 ∼ 18 billion years (for
C = 0.4) to 7.5t0 ∼ 105 billion years (for C = 0.1), in
agreement with the argument given in the previous sec-
tion. The universe with C = 0.4 never accelerates, so
this model is ruled out by the existing observations.

Thus, for every model V (φ) = Λ e−φ successfully
describing dark energy there exist many other models
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V (φ) = ΛC

(

e−φ − C
)

with 0 < C <∼ 0.3 which provide
an equally good description of the present stage of ac-
celeration, but lead to the global collapse of the universe
within the next 1010 − 1011 years.

Similar results can be obtained for many other mod-
els of dark energy, e.g. for the theories V (φ) =
ΛC

(

e−λφ − C
)

with all possible values of λ, or for the
models with the inverse power law potentials.

V. DISCUSSION

Recent discovery of acceleration of the universe is one
of the major challenges for the modern theory of fun-
damental interactions. After many attempts to explain
why the cosmological constant must be zero, the theo-
rists switched to the new paradigm and started trying to
explain why it should be positive and why, consequently,
the universe should expand forever. The first attempts
to do so in the context of M/string theory and extended
supergravity revealed many problems described, e.g., in
[19, 20]. Then we learned that one can describe acceler-
ation of the universe in extended supergravity, but in all
models based on extended supergravity, with the excep-
tion of the N=2 model of [10], the regime of acceleration
is unstable [7]. Typically it ends by a global collapse of
the universe within the time comparable with the present
age of the universe, tcollapse ∼ 10− 30 billion years [5, 6].

In this paper we have shown that the possibility of a
global collapse is not specific to supergravity but is, in
fact, quite generic. For every model of dark energy de-
scribing eternally expanding universe one can construct
many closely related models which describe the present
stage of acceleration of the universe followed by its global
collapse.

This does not mean that we are making a doomsday
prediction. None of the existing theoretical models of
dark energy look particularly natural and attractive. It
may happen that eventually we will find good theoretical
models describing an eternally accelerating universe, or
conclude, on the basis of anthropic considerations, that
dark energy should change in time extremely slowly, so
that the collapse will occur exponentially far away in the
future [21]. We hope to return to this question in the
future publications. However, in the absence of a com-
pelling theory of dark energy one may also consider a
more humble approach and try to compare predictions
of various models of dark energy with observations, see
e.g. [22].

If the universe is going to collapse, then in the begin-
ning of this process the speed of expansion of the universe
should gradually slow down, see Fig. 6. This is accom-
panied by the rapid growth of the parameter w at small
z, as shown in Fig. 5. We find it quite significant that
some of the models predicting global collapse can be al-
ready ruled out by the existing observational data. For
example, all models ΛC

(

e−φ − C
)

predicting the global
collapse within the next 18 billion years, do not describe
the present stage of acceleration, and therefore contradict
the recent cosmological observations. Thus, even though
the observational data cannot rule out the general pos-
sibility of the global collapse in the distant future, they
can help us to put strong constraints on the time of the
possible Big Crunch.
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